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Asymptotic behaviour of a dynamic local field: is the order of 
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and cr) 4 00 limits interchangeable in an interacting 
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Abstract. The wavevector- and frequency-dependent susceptibility x k ( w )  in many-body 
theory is customarily expressed in terms of a dynamic local field term G,(o). For k-. 3: 

there are certain asymptotic forms for Gk(w)  due to Shaw and to Niklasson. It is shown that 
they represent the two different orders of the k+ 3: and o --f z limits. The validity of our 
result is tested in an exactly solvable physical system. 

The dynamic susceptibility x k ( u ) ,  where k and o are, respectively, wavevector and 
frequency, is an essential theoretical quantity for describing the dynamic behaviour of 
both classical and quantum many-body systems. It links theory to experiment through 
its imaginary part, Im xk(o) ,  which is directly proportional to an inelastic scattering cross 
section. It is a response function in linear response theory, and is thus important for 
theoretical analysis. No one has been able to obtain an exact general expression or 
solution for it in the case of an interacting system in a strong-coupling regime. 

For an electron gas it is nowadays customary to express the density-density response 
function in terms of another many-body quantity known as a dynamic local field term 
Gk(w)  defined with respect to an ideal system as 

Xk(@) = xOk(w)/{l - 4 1  - G k ( ~ ) I X % 4 1  (1 1 
where x:(o)  is the dynamic susceptibility for an ideal system, uk is the Fourier transform 
of the Coulomb interaction. Note that Gk(o)  = 0 gives an RPA form which is approxi- 
mately valid in a weak coupling regime, e.g., high densities. Hence, G k ( o )  # 0 implies 
that a system is in a non-weak or strong coupling regime. The local field term was 
originally introduced phenomenologically to take into account short-range correlations 
absent in mean-field theory. In recent years, much interest has centred on finding a 
proper form for GI;(@), beginning with the pioneering work of Singwi et a1 [2]. 

Any approximate form for G k ( o )  is subject to self-consistency checks through the 
dynamic susceptibility. That is, frequency moments obtained with (1) must agree with 
those based only on static properties [l, 31. This agreement is not easily obtained in 
strong coupling regimes, e.g., low densities. As a result, to date there are still unresolved 
controversies and confusion concerning a proper form for G k ( o )  [MI. 
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Some years ago, an asymptotic form for Gk(co) was derived [7]. Assuming that 
Gk(w) = Gk for all w ,  it was shown that 

Gk-.= = 1 - g(0) (2) 

whereg(r) is the pair correlation function. Shaw's relation [7] is regarded as approximate 
at best because of his use of a generalised RPA form of Gk(w). Subsequently, a different 
result was derived [8]: 

lim Gk(w) = sD[l - g(0)]  (3 )  
k- = 

where sD = (D - 1 ) / D ,  where D denotes spatial dimensions. Niklasson's relation [8] is 
generally regarded as asymptotically exact. In fact, the work [8] is based on a kind of 
perturbation which appears to become exact as k- .  x or 03 -+ x. or both. 

These two relations [7, 81 are the only definitive statements that can be made about 
Gk(m).  Important as they are, to our knowledge they have not been tested experimentally 
or theoretically. A closer examination of [8] shows that one can also conclude 

(4) lim lim G k ( u )  = s D [ 1  - g(O)].  
k + z  U-+?: 

Since ( 3 )  is also valid as w .+ x., one has 

lim lim Gk(m) = lim lim Gk(w) 
k - r r  k - 5  

i.e., the order of the two limiting processes is interchangeable. In the absence of an exact 
solution, this interchangeability of order may possibly provide a way of testing the 
validity of the relation [8]. It is clearly a simpler test, although not sufficient by itself. 
Generally, the question of interchangeability of the order of limits of physical quantities 
is an interesting one. In an ideal system or possibly in an interacting system in a 
weak-coupling regime, one may perhaps expect interchangeability. But whether the 
interchangeability should prevail even in a strong-coupling regime, as suggested by [8], 
appears yet to be established. 

An exact formal expression for Gk(w) can be derived by the method of recurrence 
relations [9, lo], from which one can deduce its asymptotic forms. Let our many-body 
system be defined by its energy X = Xo + V", where X o  denotes the kinetic energy and 
V" the Coulomb interaction energy. Let the dynamic variable be the density fluctuation 
operator pk,  such that ( l / u )  (pk=& = n,  where n is the number density, U is the volume 
and the brackets denote an ensemble average. Then the time evolution of Pk may be 
given an orthogonal expansion 

d -  1 

where (f,} is a set of basis vectors which span the d-dimensional Hilbert space Y such 
that U,, f,) = 0 if v # p ,  the inner product meaning the Kubo scalar product (KSP) [9], 
and the aJ(t) are real functions of time. We shall denote the norm offv as llfvli = cfv,fv). 
If Y is realised by the KSP, there are recurrence relations for the fv and a,, which are 
functions solely of A V  = ~ ~ v ~ ~ / ~ ~ v - l ~ / .  The dependence of k in thef, and ay is suppressed. 
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If one chooses fo = p k ,  the time-dependent response function? ak(t)  = xk(t) /xk = 
Alul(t). Let u,(z) = %[u,(t)] where % is the Laplace transform operator. Then by the 
recurrence relation [9] 

Z ~ ( Z )  = A ~ u ~ ( z )  = 1 - Z U ~ ( Z ) .  (7) 

Define 

G k ( Z )  = Gk + H k G )  (8) 

such that Gk = Gk(z = O), i.e., Hk(z  = 0) = 0, z = i o .  Then taking the zero-frequency 
limit of (l), we obtain 

Gk= 1 + ukl(l/xk - 1/x!) = 1 - (Al  - A!>/Ukl l f l l /  = - A!v l (k ) /o i  (9) 

where v l ( k )  = Al/Ay - 1 and oi = ukllfll/, llflll = l f l l i o  = nk2/m, where m is the mass. 
The superscript 0 denotes an ideal quantity, i.e., obtained with Xo.  Next using (8) we 
put (7) into the form of (l), with z = i o ,  to obtain 

H k ( Z )  = - (Z/Ukl/fl I l l  [lib - l / W ) l  (10) 

where [Ill 

b l ( z )  ul(z)/ao(z) = 1/{z + A2/[2 + Aj/ (z  + . . .)I}. (11) 

Using (8)-(11), one can obtain asymptotic forms of Gk(z). We first look at the z+ x 

behaviour. For z + x, (11) can be expressed as 

l /b,(z) = z + A2/z  - A 2 A 3 / z 3  + O ( Z - ~ ) .  

H ~ ( z )  = - A ; ~ 2 ( k ) / ~ i  + O ( Z - ~ )  

(12) 

Hence, 

(13) 

where q2(k )  = A2/A; - 1. Thus, there is a frequency-independent contribution 
H k ( x )  # 0, depending on k.  This is different from the z -+ 0 limit where Hk(0)  = 0'f. 

Hence, putting together we have 

G ~ ( z +  CO) = Gk + Hk(=) = 1 - [ A : ~ i ( k )  + A;qZ(k)]/oE. (14) 

Now A! and A V ,  v = 1, 2 are static quantities, i.e., density-density correlation 
functions in the ideal and non-ideal systems; hence, they are calculable from Xo and X ,  
respectively. In particular, one can obtain them from the third frequency moment [12]9 

b 3 ( k ) )  = ( [ P k ,  [X [% [% P - k l  ' . ' I )  = liflll(A1 + A21 
= ( n k 2 / ~ ) [ f i 2 ~ ~  + 1 2 T ~ k / D  + o;(l - Zk)] (15) 

+ In the conventional theory, x,(w) is defined such that xk(w = 0) = xt < 0. In the recurrence relations 
method. it is non-negative since xk  = iip,iI, being a norm or a length. Hence, there is an overall minus sign 
difference between the two approaches. The normalised quantity f,(w) = xK(w) /xk  is, however, independent 
of any given convention. Equation (1) is defined for the conventional theory. 
i: It is by no means obvious that H k ( z )  given by (10) should necessarily give Hk(z = 0) = 0 as assumed in (8). 
In fact, if d is an odd integer, Hk(0)  # 0 and G,(O) = G, + H,(O). If, however, d is infinite (as we shall assume 
here), H,(O) = 0. For most physical problems, d = 30. 

0 The first line of equation (15) follows from ( w 3 ( k ) )  = -(l/x) JTS dw w 3  Im x k ( w )  = liflll(A, + A*). See 
[ll]. The classical solution is obtained by taking h = 0 in the second line of (15) .  See also [13]. 



3870 Letter to the Editor 

where o k  = k2/2m, Tis the average kinetic energy per particle in the non-ideal system, 
and 

where S(k) is the static structure factor and Nis  the number of particles. One can write 
an analogous expression for the ideal system. Hence, 

AYql(k)/Wg = 1 - Gk 

A g q 2 ( k ) / ~ ;  = 6 7 ,  + Gk - I k  

(17) 

( 1 8 )  

where 67k = 12Wk6T/DW;, 6 T  = T - To.  Substitution of (17) and (18) in (14) and 
setting z = io yields 

Gk(O' =) = 1, - 6Tk + o(@-2). (19) 

Hence, 

Now from (16) 

l k + c  = S D [ 1  - g(0)l. (21) 

Thus, one can recover the relation (3) [8] if 6Tk = 0 as in classical systems [6]. 
We next look at the k -+ CC behaviour of G k ( u ) .  Wow if k- ,  m ,  one may expect A, --+ 

A!, since the difference between the two families of norms arises from 7 f  = 
- %$ - u k  = O(k-*) .  From (10) we see that this difference essentially determines 

H k ( w ) ,  the frequency-dependent part of G k ( o ) .  Hence, this quantity may be expressible 
as,e.g.,expansionsofq,= A,/A! - l , v = 2 , 3 , .  . . .Weassumethat /q , (k- ,x) l<l .  
To obtain such an expression systematically, we set up a discrete process as follows. In 
the first order, q2  = q3 = . . . = 0. In the second order, q 2  # 0; q 3  = q 4  = . . . = 0. In 
the third order, q 2 ,  q3 # 0; q 4  = q s  = . . . = 0, etcf.  Retaining only linear terms of the 
q,, we find the following expansions of f f k ( u j  fork-, x: 

H p ( o )  = 0 (24a) 

( 2 4 4  

where 

Q e,(@) = 1 / ~ ~ ( ~ )  + &)'/AY - 1. (25) 

Each expansion has a common factor Q/uklxi/. We first consider the asymp- 
totic behaviour of Q defined by (25). For k +  x ,  one can show that 
f There are no truncations in this expansion, i.e.,  b,(r)  and by(z) are still infinite continued fractions. For a 
comparison, see [14]. 
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$(w)  
are expressed in dimensionless unitsf. Hence, from (25) we have 

x i (w) / x !  = 1 + w2/k4 + O(k-')  and AY = k'(1 + O(k- ' ) ) ,  where w and k 

lim Qk(co) = O ( P ) .  
k- x 

Also, uklxfl = O(k-4). Hence, the common factor behaves as 

lim Qk(w)/UklXi/ = O ( k - 2 ) .  (26) 
k+ = 

We next examine the v u .  For k +  x ,  one can express them as q v  = p v  + qUk-* + . . . , 
where p u  and qu are constants depending only on such parameters as r,. Now, p ,  = 0 if 
uisodd.Butp,  = p  = T I T o -  1i fv iseven .For l  < r , < 5 , p  -0.04-0.3.Seethesecond 
reference of [6]. Every H Y ' ( w )  consists of terms each of which thus behaves as O(k-*) .  
Hence, every H p ) ( w )  vanishes asymptotically with k .  We may, therefore, conclude that, 
at this limit, the frequency-dependent part makes no contributions at all, and 

A similar argument may be used to arrive at the same conclusion for classical systems. 
Now fork+ x ,  we can use the form of Gk given in [2,16]$. Thus, 

(28) 
Gk+.: = lim N-'  2 [I - S(k  - 4)] ( k  q ) / q 2  = 1 - g(0). 

r i  k+ x 

We recover Shaw's relation [7].  It follows since the assumption Gk(w)  = Gk is valid at 
the limit k + x [7].  

From (20) and (27) we observe that the order of the two limiting processes is 
not interchangeable. A system, in a non-weak or strong coupling regime, responds 
asymmetrically to the order of probes involving very rapid variations in space and time. 
It does not respond in a free-particle-type manner as some have argued [ 8 ] .  

Our conclusion can be put to a test for one exactly solvable system: a 2D classical 
single-component plasma gas with a logarithmic potential, i.e., u k  = 2ne2/k2. At r = 
e2/kT = 2 (non-weak coupling regime), there is a remarkable result due to Jancovici 
[17] that g(r)  = 1 - exp( -?), hence S(k)  = 1 - exp( -k2/4), where rand k are given in 
dimensionless units. For this system at r = 2, it is possible to construct Gk(w)  which 
satisfies the third frequency-moment and compressibility sum rules simultaneously [ 181. 
Furthermore, 1, and Gk can be calculated exactly# 

1 (29) 
(30) 

(31) 

1 - 1 - (2/k2)(1 - e-k2/4 
k - 2  

G k  = 1 - (k2/4)(ek2'4 - 1)-1.  

lim lim Gk(W) = r k + ,  = t 
Recalling that 6 T  = 0 for a classical system, we obtain from (20) and (27) 

k - r  U--+= 

lim lim Gk(w)  = Gk+.: = 1. 
w - x  k + x  

+ With k and w given in units of kr and E ~ ,  respectively, we can express ~ f ( w )  = ~ ( k ;  w )  as follows: ~ ( k ;  w )  = 
(i + w/k2)X(k + 2w/k )  + (2 - w/k2)X(k - 2w/k), where ~ ( k ;  0) = ~ ( k ) .  Now if k +  30, iX(k)l = ( 2 n / ~ ~ ) k - ~  + 
O ( k 4 ) .  See [15]. Hence, for k +  x ,  ~ ( k ,  w) /X(k)  = 1 + 0 2 / k 4  + 0 ( K 6 ) .  Also, A:) = ~ ~ , ~ ~ o / ~ ~ o ~ ~ n  = 
( n k ' / m ) / I x ~ ~  = &:k4[1 + O ( K ~ ) ] .  
$ A rigorous expression for Gk has been given in terms of the pair and triple correlation functions [16]. See 
equation (21) of [16], and also see equation (2.71) of [3]. With this expression it is possible to argue that 
contributions from the triple correlation functions vanish if k -+ =. Then the remainder becomes exactly the 
form due to [2]. 
§ (29) has also been obtained [19]. See also [20]. 
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The above results are in exact agreement with the predictions of Niklasson’s [8] and 
Shaw’s [7] relations (with sD = 3 and g(0 )  = O)?. 

We are grateful to D r  G Niklasson for explaining his work to us. This work was supported 
in part by NSF. ARO. KOSEF and the Daewoo Foundation. 
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